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AN OPTIMIZED EXTREME LEARNING MACHINE USING 
ARTIFICIAL CHEMICAL REACTION OPTIMIZATION ALGORITHM 
TỐI ƯU HÓA MÁY HỌC CỰC TRỊ SỬ DỤNG THUẬT TOÁN PHẢN ỨNG HÓA HỌC NHÂN TẠO 

 

Tran Thuy Van 

 

ABSTRACT 
Extreme Learning Machine (ELM) is a simple learning algorithm for single-

hidden-layer feed-forward neural network. The learning speed of ELM can be 
thousands of times faster than back-propagation algorithm, while obtaining 
better generalization performance. However, ELM may need high number of 
hidden neurons and lead to ill-condition problem due to the random 
determination of the input weights and hidden biases. In order to surmount the 
weakness of ELM, this paper proposes an optimization scheme for ELM based on
artificial chemical reaction optimization algorithm (ACROA). By using ACROA to 
optimize the hidden biases and input weights according to both Root mean 
squared error and the Norm of output weights, the classification performance of
ELM will be improved. The experimental result on several real benchmark 
problems demonstrates that the proposed method can attain higher 
classification accuracy than traditional ELM and other evolutionary ELMs.  

Keywords: Extreme learning machine (ELM), artificial chemical reaction 
optimization algorithm (ACROA), single-hidden-layer feed-forward neural network 
(SLFN); learning algorithm; classification. 

TÓM TẮT 
Máy học cực trị (ELM) là một thuật toán học đơn giản ứng dụng cho các mạng 

nơ-ron truyền thẳng một lớp ẩn. Tốc độ học của ELM nhanh hơn gấp nghìn lần so 
với thuật toán lan truyền ngược, trong khi đó nó đạt được hiệu suất cao hơn. Tuy 
nhiên, vì các trọng số nút vào và các sai lệch nút ẩn được lựa chọn ngẫu nhiên, nên 
thuật toán ELM có thể cần nhiều nơ-ron ở lớp ẩn và dẫn đến vấn đề nhiều điều kiện 
ràng buộc. Để giải quyết mặt hạn chế này của ELM, bài báo này đề xuất một chiến 
lược tối ưu cho ELM trên cơ sở thuật toán tối ưu phản ứng hóa học nhân tạo 
(ACROA). Bằng việc sử dụng ACROA để tối ưu hóa các trọng số vào và sai lệch của các 
nút ẩn trên cơ sở hai tiêu chuẩn định mức trọng số đầu ra và lỗi bình phương trung 
bình, hiệu suất phân loại của ELM được cải thiện. Kết quả thực nghiệm trên vài tập 
mẫu chuẩn trong thực tế chứng minh rằng phương pháp đã đề xuất đạt độ chính 
xác phân loại cao hơn ELM gốc và các ELM tiến hóa khác. 

Từ khóa: Máy học cực trị (ELM), thuật toán tối ưu phản ứng hóa học nhân tạo 
(ACROA), mạng nơ-ron truyền thẳng một lớp ẩn (SLFN), thuật toán học, sự phân loại. 
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Nomenclature 
ACROA Artificial Chemical Reaction Optimization 

Algorithm 
ELM Extreme Learning Machine 
SLFN Single-hidden-Layer Feed-forward Neural 

network 
CGLAs Classical Gradient-based Learning 

Algorithms 
PSO Particle Swarm Optimization 
DE Differential Evolutionary 
RMSE Root Mean Squared Error 
MP Moore-Penrose 

1. INTRODUCTION 
Classical gradient-based learning algorithms (CGLAs) 

such as Levenberg-Marquardt and back propagation were 
widely applied for training single-hidden-layer feed-
forward neural network (SLFN) [1]. Nonetheless, the CGLAs 
are able to be dropped toward a local minimum and time 
consuming due to inappropriate learning steps [2]. To deal 
with the drawbacks of Levenberg-Marquardt and back 
propagation algorithms, an extreme learning machine 
(ELM) was proposed by Huang et al. [1, 3] in 2004. In ELM, 
the input weights and hidden biases are randomly chosen, 
and the corresponding output weights will be determined 
analytically through Moore-Penrose (MP) generalized 
inverse [4]. The ELM tends to reach the smallest norm of 
output weights and attains the smallest training error [5, 
21]. So, the ELM has faster learning speed and better 
generalization performance than those of the CGLAs. 
Moreover, ELM can avoid local minima and time 
consuming [6, 22]. 

For overcoming the above weakness of ELM, some 
nature-inspired population-based methods with global 
search capabilities had been successfully applied by 
optimizing the hidden biases and input weights, such as the 
combination of genetic algorithm and ELM [23], differential 
evolutionary (DE) [8], particle swarm optimization (PSO) [7]. 
In [6], an evolutionary ELM (E-ELM) was proposed which used 
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advantages of both ELM algorithm and DE algorithm. A 
modified DE was used to search for the optimal hidden 
biases and input weights, and the output weights were 
analytically determined by using MP generalized inverse. 
Thus E-ELM was able to obtain better generalization 
performance with much more compact networks. In the 
literature [9], a hybrid algorithm was proposed to optimize 
the hidden biases and input weights which could train the 
network to be more suitable for some prediction problems, 
namely evolutionary ELM based on PSO (PSO-ELM). Another 
hybrid evolutionary approach was proposed by Pacifico et al. 
[10] to select the optimal hidden biases and input weights of 
ELM by using PSO combining local best topology and 
clustering strategies. 

Recently, a novel meta-heuristic optimization method 
was suggested by Alatas, namely artificial chemical reaction 
optimization algorithm (ACROA) [11]. ACROA is developed 
based on the chemical reactions of molecules and the 
second law of thermodynamics, so a system tends to the 
lowest enthalpy and the highest entropy [12]. In the 
ACROA, enthalpy or entropy can be used as objective 
function for minimization or maximization problem. 
ACROA is different from genetic algorithm [13] and PSO in 
solution mechanism of optimization and search. The 
ACROA has fewer parameters, and is more robust. Thus, 
ACROA method is adapted to solve the optimization 
problems. The successful application of the ACROA for the 
mining of classification rules can be indicated in [14]. 

In this paper, an optimization scheme for ELM based on 
ACROA is proposed to overcome the weakness of ELM, and 
to maximize ELM classifier’s generalization performance. 
Firstly, CRO algorithm is used to optimize the hidden biases 
and input weights according to both the norm of output 
weights and the root mean squared error (RMSE) on 
validation set. Consequently, the corresponding output 
weights can be determined analytically. Secondly, the 
proposed method is compared with other methods over 
some benchmark classification problems available in the 
public repository. The experimental results show that the 
proposed method can attain higher classification accuracy 
than both other evolutionary ELMs and original ELM, while 
cost time is shorter than other evolutionary ELMs. 
2. EXTREME LEARNING MACHINE 

In the ELM for SLFN [3, 4], the hidden biases and input 
weights are randomly generated, and the output weights 
are analytically determined with a given number of hidden 
neurons. For a classification problem, a set of N  arbitrary 
distinct samples can be expressed as � = ��z�,q��|z�∈

R�;q�∈ R� ;j = 1,2,…, N�, where z�= �z��,z��,…, z���
�

 is 
an n-dimensional features vector of sample  j��, and 

q�= �q��,q��,… ,q���
�

 is a coded class label vector. Then a 
standard SLFN with L hidden neurons and activation 
function μ(	.) can approximate the samples set �  with zero 
error. This means that the SLFN is mathematically modeled 
as the following linear system [3]: 

� w�μ�v�z�+ b��
�

���
= q�;	j = 1,2,…, N,      (1) 

where v� = [v��, v��,… ,v��] is the weight vector 
connecting the input nodes and the i�� hidden node, 
w� = [w��,w��,…,w�� ]

� is the weight vector connecting 
the i�� hidden node and the output nodes, and b� is the 
bias of the i�� hidden node. It should be noted that many 
activation functions can be used for hidden neurons in 
original ELM classifier, such as sigmoidal, sine, tri-angular 
basis and radial basis. 

The (1) can be rewritten compactly in a matrix form as 
follows: 

HW = Q,           (2) 
where H, W, and Q are the hidden layer output matrix, the 
output weights matrix, and the coded class label matrix, 
respectively. These matrices can be represented as follows: 

H(v�,… ,v�, b�,…,b�, z�,…,z� ) 

      = �
μ(v�z� + b�) ⋯ μ(v�z� + b�)

⋮ ⋯ ⋮
μ(v�z� + b�) ⋯ μ(v�z� + b�)

�

�×�

; 

	W =�
w�

�

⋮
w�

�
�

�×�

; 	Q =�
q�
�

⋮
q�
�
�

�×�

.       (3) 

Thus, for the given linear system as in (2), the output 
weights are determined by finding the least-square 
solution [15]. The minimum norm least-square solution of 
the above linear system can be represented as follows [4]: 

W� = H�Q,          (4) 

where H� is the Moore-Penrose (MP) generalized inverse 
[16] of matrix H. The solution W�  is unique, and has the 
smallest norm among all the least-square solutions of (2). 
This implies that the smallest training error can be reached, 
and ELM tends to obtain good generalization performance 
by using the MP generalized inverse method [6]. Moreover, 
since all the parameters of SLFN need not be tuned, the ELM 
algorithm converges much faster than the CGLAs. 

3. ACROA METHOD 
ACROA is a stochastic and adaptive search method. Its 

optimization is based on a chemical reaction process that 
leads to the transformation of chemical substances into 
another. The principle of ACROA contains five steps (more 
details about five steps can be found in [11, 14]. 

Step 1: Optimization problem and initial parameters. 
The optimization problem is defined as 

minimize{f(α)};	α� ∈ H� = �θ�
� ,θ�

��;	 

p = {1,2,…,M}                        (5) 
where f(α) is a objective function, α = [α�,α�,… ,α�] is 

a decision variables vector, H� is the feasible range of 
values for p�� decision variable, M is the number of decision 
variables, and θ�� and θ��  are the upper and lower bounds of 
the p�� decision variable, respectively. The different 
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encoding type of molecules is used appropriately for each 
optimization problem. Also, the parameter ReacNum is 
initialized in this step. 

Step 2: Initialization and evaluation for reactants. The 
reactants are initialized uniformly in the possible solution 
region. The association rules are represented, and the value 
of objective function is evaluated. 

Step 3: Application of elementary reactions. In the 
ACROA, there are five elementary reactions, namely 
decomposition reaction, redox1 reaction, synthesis 
reaction, displacement reaction, and redox2 reaction. 

Step 4: Updating reactants. The chemical equilibrium is 
tested, and the new reactants are updated by evaluating 
objective function value. 

Step 5: Checking termination criterion. Step 3 and step 
4 will be repeated until the termination criterion is met. 

4. OPTIMIZED ELM USING ACROA (AC-ELM) 
In this section, ACROA will be used to optimize the 

hidden biases and input weights of ELM with the prefixed 
number of hidden neurons. The flow chart of AC-ELM is 
shown in Fig. 1, and consists of the following detailed steps: 

The first, the set of initial molecules (Pop) is randomly 
generated, in which each molecular structure represents 
one ELM model. Each molecular structure in this solution 
set is composed of a vector of hidden biases and input 
weights: 

ω� = �
v��,v��,…, v��, v��, v��,…, v��,…,

v��, v��,… ,v��, b�,b�,…, b�
�,      (6) 

where ω� is the k�� molecular structure of the 
molecules set, and k = 1,2,… ,PopSize. All elements in the 
molecular structure are randomly initialized within the 
range of [−1,1]. 

The second, instead of the whole training samples set as 
used in the literatures [6, 17], the corresponding fitness 
function of each molecular structure is only adopted as 
RMSE on the validation samples set to avoid the over-fitting 
of the SLFN: 

�(	.) = �
�

� �
� �� w�μ�v�z�+ b��

�

���
− q��

�

�� �

���

,     (7) 

where N�  is the number of the validation samples 
(N� < N	), and ‖	.‖� is the Euclidean norm. Then, the 
fitness function of each molecular structure is evaluated. 
For each molecular structure, the corresponding output 
weights are determined according to (4) on the training 
samples set. 

The third, as investigated by Bartlett et al. [18] and Zhu 
et al. [6], neural networks tend to get the weights of smaller 
norm to reach better generalization performance. In order 
to obtain the best molecular structure for the population of 
molecules, the RMSE on the validation samples set along 
with the norm of output weights are considered. Thus, the 

generalization performance of SLFN is significantly 
improved. The corresponding details are described as 
follows: 

ω� =

⎩
⎪
⎨

⎪
⎧
ω�,

⎣
⎢
⎢
⎡
�f(ω�) − f(ω�) ≥ εf(ω�)�	or

�
�|f(ω�) − f(ω�)|< εf(ω�)�

and��W��
�
�
< �W��

�
�
�
�

ω�, else

,     (8) 

where ε is a tolerance rate, and f(ω�) and f(ω�) are the 
corresponding fitness functions for the k�� molecular 
structure and the best molecular structure of all molecules, 
respectively. W��

 is the matrix of the corresponding output 
weights when the hidden biases and input weights are set 
as the k�� molecular structure, and W��

 is the best 
molecular structure of all molecules attained by MP 
generalized inverse. 

 
Fig. 1. The flow chart of AC-ELM 

The fourth, in the iteration, the new molecules are 
added into the population by occurring uni-molecular 
collision or inter-molecular collision. According to the 
literatures [3, 4], all elements in the molecular structure 
should be bounded within the range of [−1,1]. Therefore, 
the normalization of the elements of these new molecules 
in the ACROA is needed, and it is performed as follows: 

v�� = �
−2− v��, v�� < −1
2 − v��, v�� > 1

;	i = 1,2,…,L; 	s = 1,2,…,m, (9) 

b� = �
−2− b�, b� < −1
2 − b�, b� > 1

;	i = 1,2,… ,L.    (10) 
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Finally, the process of the above optimization is 
reiterated until the stopping criterion is met. Therefore, the 
optimal ELM with the obtained hidden biases and input 
weights is applied to the testing samples set. 

5. EXPERIMENT RESULTS 
In this section, the experimental results are presented 

on four classic classification problems from UCI machine 
repository [19] to validate our proposed method. These 
benchmark data sets present different degrees of 
difficulties and different number of classes. The 
specification of these problems is listed in Table 1. For each 
trial of simulation, the training, validation and testing data 
sets are randomly regenerated from its whole data set for 
all the algorithms [6]. 

In the experiment of this paper, all the input attributes 
and output classes have been normalized to the ranges 
[0,1] and [−1,1], respectively. The input weights and the 
biases of ELM have been obtained into the range [−1, 1]. 
The sigmoidal function μ(x) = 1 (1 + e�� )⁄  is used as the 
activation function for ELM [4]. 

In order to evaluate the performance and effectiveness 
of proposed AC-ELM method, the AC-ELM method is 
compared with original batch ELM [4], the evolutionary 
ELM (E-ELM) [6], and the evolutionary ELM based on PSO 
(PSO-ELM) [9]. All the simulated results are carried out in 
MATLAB 7.10 environment. 

Table 1. Specification of four classification problems 

Problems Attributes Classes 
Number of samples 

Training Validation Testing Total 

Cancer 30 2 229 170 170 569 

Credit 14 2 270 210 210 690 

Diabetes 8 2 252 258 258 768 

Glass 9 6 114 50 50 214 

Four algorithms, the ELM, the PSO-ELM, the E-ELM, and 
the AC-ELM, were used to classify four data sets (in Table 1). 
For PSO, the parameters were fixed for all data sets as in 
Table 2, according to the literatures [10, 20]. Similar to PSO, 
the population sizes and maximum learning epochs of DE 
were set to 50 and 100, respectively, and some other 
parameters were fixed with the values given in Table 3 [6]. 
To make a fair comparison, the values of the ACROA were 
chosen to be the same, e.g., the initial population is set by 
ReacNum = 50, and the termination criterion is considered 
as 100 iterations. The performance of all methods is 
evaluated by using the average and standard deviation 
(Dev) of the testing accuracy in 50 trials. 

Table 2. PSO parameters for all simulations 

Parameters Value 

Swarm Size (s) 50 

Acceleration Factors (c1) 1.9 

Acceleration Factors (c2) 1.9 

Inertia Factor (w) 0.8 to 0.3 

Maximum Number of Iterations 100 

Number of Trials 50 

Table 3. DE parameters for all simulations 

Parameters Value 

Population Size (NP) 50 

Constant Factor (F) 0.9 

Crossover Constant (CR) 0.7 

Tolerance Rate (�) 0.03 

Maximum Learning Epochs 100 

Number of Trials 50 

First of all, the simulation of the original ELM classifier is 
represented for four classification problems. The number of 
neurons in the hidden-layer is considered in the range 
[1,100]. Fig. 2 shows the training and testing accuracies 
depend on the number of hidden nodes for all data sets. 

 
Fig. 2. The training and testing accuracies of ELM depend on the number of 

hidden nodes 
As seen from the results in Fig. 2, the training accuracies 

increase when the number of hidden nodes increases. 
However, the testing accuracies only obtain maximum 
values with the number of hidden nodes in the range 
[10,30], and they obtain lower value with other numbers 
of hidden nodes. Specifically, the highest results of the 
testing accuracies, together with the corresponding 
number of nodes in the hidden layer, are presented in 
Table 4. In Table 4, the corresponding performances of 
three evolutionary ELMs on all classification problems are 
also shown. Note that for all data sets and algorithms, the 
best results (according to the empirical analysis) are 
emphasized in bold. 
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Table 4. Performance of four algorithms on all data sets 

ProblemsAlgorithms Hidden 
Nodes 

Average Accuracy 
(%) ± Standard 

Deviation 
Cost 

Time (s) 

Norm of 
Output 

Weights 
Training 

± Dev 
Testing 

± Dev 
Cancer ELM 36 96.36 ± 

0.47 
94.74 ± 

1.28 
0.0278 2.3452x105 

 PSO-ELM 16 
95.50 ± 

0.33 
95.23 ± 

1.01 
16.4638 2.1947x104 

 E-ELM 16 
94.57 ± 

0.89 
95.15 ± 

1.52 
12.2285 2.3048x104 

 AC-ELM 16 95.89 ± 
1.28 

95.73 
± 1.35 1.5651 1.7653x104 

Credit ELM 20 
85.87 ± 

0.84 
84.67 ± 

2.25 
0.34082 4.7832x106 

 PSO-ELM 16 
86.85 ± 

0.46 
85.96 ± 

1.77 
18.8695 4.8932x105 

 E-ELM 16 
84.77 ± 

1.38 
86.15 ± 

1.75 
12.0234 6.5274x105 

 AC-ELM 16 86.95 ± 
1.69 

86.42 
± 1.48 

1.643168 6.1132x105 

Diabetes ELM 15 
77.56 ± 

1.29 
76.14 ± 

2.29 0.0345 7.8732x101 

 PSO-ELM 12 78.82 ± 
0.76 

76.87 ± 
1.62 

27.8762 4.6402x101 

 E-ELM 12 
76.81 ± 

1.97 
76.91 ± 

1.71 
17.4382 5.4987x101 

 AC-ELM 12 77.92 ± 
1.62 

77.25 
± 1.38 

2.2376 4.1295x101 

Glass ELM 30 75.21 ± 
2.54 

64.37 ± 
6.79 0.0201 4.8732x105 

 PSO-ELM 12 
70.98 ± 

1.98 
65.31 ± 

5.08 
8.5836 1.3106x104 

 E-ELM 12 
66.53 ± 

3.05 
65.12 ± 

4.92 
8.7601 2.4382x104 

 AC-ELM 12 70.29 ± 
5.42 

65.59 
± 4.47 1.2139 1.8762x104 

From Table 4, it can be seen that the testing accuracy of 
AC-ELM algorithm is the highest, compared with the other 
three algorithms on all the data sets. The training accuracy 
of the AC-ELM is highest on Credit data set only, while the 
training accuracy of the ELM and PSO-ELM are highest on 
two data sets (Cancer, Glass) and one data set (Diabetes), 
respectively. The cost time of the AC-ELM is less than the 
PSO-ELM and the E-ELM on all the data sets. Specially, the 
number of hidden nodes which used to attain these results 
in the AC-ELM is less than that in the ELM, and the same in 
both the PSO-ELM and the E-ELM. Clearly, the global and 
local research ability of ACROA advantages reducing the 

hidden neurons in the AC-ELM, and improving the testing 
accuracy. The results in Table 4 also show that the AC-ELM 
is able to obtain the smaller norm of the output weights 
than the PSO-ELM, the E-ELM, and the ELM on two data sets 
(such as Cancer and Diabetes). For Credit and Glass data 
sets, the smallest norm of the output weights is obtained 
by the PSO-ELM method. Besides, for four compared ELMs 
on all data sets, the norm values at each trial are surveyed, 
and represented in Fig. 3. 

As seen from Fig. 3, the norm values of the output 
weights obtained by the PSO-ELM, the E-ELM, and the AC-
ELM is almost less than those achieved by the ELM on all 
cases in each trial except on Diabetes classifications. In all 
cases, the norm values of the AC-ELM are steadier than 
those of the ELM, the PSO-ELM, and the E-ELM. Therefore, 
the proposed algorithm has the best generalization 
performance in all compared algorithms. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 3. The norm of output weights at each trial on Cancer, Credit, Diabetes, 
and Glass 

(a) For Cancer data set; (b) For Credit data set;  
(c) For Diabetes data set; (d) For Glass data set 

6. CONCLUSIONS 
In this paper, a novel learning algorithm based on 

hybridization of ACROA with ELM, namely AC-ELM is 
proposed. In the proposed algorithm, the hidden biases and 
input weights of the ELM were optimized by the ACROA, and 
the output weights of the ELM were analytically determined 
by using the smallest norm least-square scheme. Moreover, 
in the process of optimizing the hidden biases and input 
weights, the ACROA algorithm considered both the norm of 
the output weights and the RMSE on validation samples set. 
Therefore, the AC-ELM can search the global minimum, 
which represents the SLFN providing the best generalization 
performance. Finally, the performance of the tested 
algorithms was evaluated with well-known benchmark 
classification datasets. Experiment results show that the AC-
ELM obtains higher testing accuracy on the various datasets 
than the ELM, the PSO-ELM and the E-ELM, while the AC-ELM 
obtains lower cost time. 
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