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AN OPTIMIZED EXTREME LEARNING MACHINE USING
ARTIFICIAL CHEMICAL REACTION OPTIMIZATION ALGORITHM

TOI U HOA MAY HOC CUC TRI SU DUNG THUAT TOAN PHAN UNG HOA HOC NHAN TAO

ABSTRACT

Extreme Learning Machine (ELM) is a simple learning algorithm for single-
hidden-layer feed-forward neural network. The learning speed of ELM can be
thousands of times faster than back-propagation algorithm, while obtaining
better generalization performance. However, ELM may need high number of
hidden neurons and lead to ill-condition problem due to the random
determination of the input weights and hidden biases. In order to surmount the
weakness of ELM, this paper proposes an optimization scheme for ELM based on
artificial chemical reaction optimization algorithm (ACROA). By using ACROA to
optimize the hidden biases and input weights according to both Root mean
squared error and the Norm of output weights, the classification performance of
ELM will be improved. The experimental result on several real benchmark
problems demonstrates that the proposed method can attain higher
classification accuracy than traditional ELM and other evolutionary ELMs.

Keywords: Extreme learning machine (ELM), artificial chemical reaction
optimization algorithm (ACROA), single-hidden-layer feed-forward neural network
(SLFN); learning algorithm; classification.

TOMTAT

Méy hoc cyc tri (ELM) Ia mt thudt todn hoc don gian tng dung cho céc mang
no-ron truyén thang mat I6p &n. T6c do hoc ctia ELM nhanh hon gép nghin an so
v6i thuét toan lan truyén nguoc, trong khi dé né dat dugc hiéu sudt cao hon. Tuy
nhién, vi c&c trong s nit vao va céc sai léch ndit &n duoc lira chon ngau nhién, nén
thuét toan ELM ¢0 thé c&n nhiéu no-ron & 16p &n va dan dén van d& nhigu digu kién
rang budc. D& gidi quyét mét han ché nay clia ELM, bai béo nay dé xudt mdt chién
lwgc t6i wu cho ELM trén co ¢ thudt toan t6i uu phan (ng héa hoc nhan tao
(ACROAY). Bang viéc sl dung ACROA dé tdi tru hoa céc trong s6 vao va sai léch clia cac
nit &n trén co s hai tiéu chudn dinh mitc trong s8 dAu rava I6i binh phuong trung
binh, hiéu sudt phan loai ctia ELM dugc cai thién. Két qua thyc nghiém trén vai tap
mau chuén trong thuc € chitng minh rang phirong phép da d& xuét dat do chinh
xac phan loai cao hon ELM g6c va cac ELM tién héa khéc.

Tir khéa: May hoc cuc tri (ELM), thuét todn t6i tu phan (ing hda hoc nhan tao
(ACROA), mang no-ron truyn thang mat lp an (SLFN), thuat toan hoc, sty phén loai.
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Nomenclature

ACROA Artificial Chemical Reaction Optimization
Algorithm

ELM Extreme Learning Machine

SLFN Single-hidden-Layer Feed-forward Neural
network

CGLAs Classical Gradient-based Learning
Algorithms

PSO Particle Swarm Optimization

DE Differential Evolutionary

RMSE Root Mean Squared Error

MP Moore-Penrose

1. INTRODUCTION

Classical gradient-based learning algorithms (CGLAS)
such as Levenberg-Marquardt and back propagation were
widely applied for training single-hidden-layer feed-
forward neural network (SLFN) [1]. Nonetheless, the CGLAs
are able to be dropped toward a local minimum and time
consuming due to inappropriate learning steps [2]. To deal
with the drawbacks of Levenberg-Marquardt and back
propagation algorithms, an extreme learning machine
(ELM) was proposed by Huang et al. [1, 3] in 2004. In ELM,
the input weights and hidden biases are randomly chosen,
and the corresponding output weights will be determined
analytically through Moore-Penrose (MP) generalized
inverse [4]. The ELM tends to reach the smallest norm of
output weights and attains the smallest training error [5,
21]. So, the ELM has faster learning speed and better
generalization performance than those of the CGLAs.
Moreover, ELM can avoid local minima and time
consuming [6, 22].

For overcoming the above weakness of ELM, some
nature-inspired population-based methods with global
search capabilities had been successfully applied by
optimizing the hidden biases and input weights, such as the
combination of genetic algorithm and ELM [23], differential
evolutionary (DE) [8], particle swarm optimization (PSO) [7].
In [6], an evolutionary ELM (E-ELM) was proposed which used
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advantages of both ELM algorithm and DE algorithm. A
modified DE was used to search for the optimal hidden
biases and input weights, and the output weights were
analytically determined by using MP generalized inverse.
Thus E-ELM was able to obtain better generalization
performance with much more compact networks. In the
literature [9], a hybrid algorithm was proposed to optimize
the hidden biases and input weights which could train the
network to be more suitable for some prediction problems,
namely evolutionary ELM based on PSO (PSO-ELM). Another
hybrid evolutionary approach was proposed by Pacifico et al.
[10] to select the optimal hidden biases and input weights of
ELM by using PSO combining local best topology and
clustering strategies.

Recently, a novel meta-heuristic optimization method
was suggested by Alatas, namely artificial chemical reaction
optimization algorithm (ACROA) [11]. ACROA is developed
based on the chemical reactions of molecules and the
second law of thermodynamics, so a system tends to the
lowest enthalpy and the highest entropy [12]. In the
ACROA, enthalpy or entropy can be used as objective
function for minimization or maximization problem.
ACROA is different from genetic algorithm [13] and PSO in
solution mechanism of optimization and search. The
ACROA has fewer parameters, and is more robust. Thus,
ACROA method is adapted to solve the optimization
problems. The successful application of the ACROA for the
mining of classification rules can be indicated in [14].

In this paper, an optimization scheme for ELM based on
ACROA is proposed to overcome the weakness of ELM, and
to maximize ELM classifier's generalization performance.
Firstly, CRO algorithm is used to optimize the hidden biases
and input weights according to both the norm of output
weights and the root mean squared error (RMSE) on
validation set. Consequently, the corresponding output
weights can be determined analytically. Secondly, the
proposed method is compared with other methods over
some benchmark classification problems available in the
public repository. The experimental results show that the
proposed method can attain higher classification accuracy
than both other evolutionary ELMs and original ELM, while
cost time is shorter than other evolutionary ELMs.

2. EXTREME LEARNING MACHINE

In the ELM for SLFN [3, 4], the hidden biases and input
weights are randomly generated, and the output weights
are analytically determined with a given number of hidden
neurons. For a classification problem, a set of N arbitrary
distinct samples can be expressed as Q= {(z, )|z €
R gER™; j =1,2, .}, Nvhere 7, = [z, 75 . @] IS
an n-dimensional features vector of sample %, and
9 =[dj» 92 - gn]T is a coded class label vector. Then a
standard SLFN with L hidden neurons and activation
function p( ) can approximate the samples set Q with zero
error. This means that the SLFN is mathematically modeled
as the following linear system [3]:
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L
é ] lwiu(ViZ]' +bl) = q], ] = 1, 2, ey N (1)
i=

where v; =[vy;, 4, . %] IS the weight vector
connecting the input nodes and the i™ hidden node,
w; = [wi, W, ... W,]T is the weight vector connecting
the it" hidden node and the output nodes, and b; is the
bias of the i™® hidden node. It should be noted that many
activation functions can be used for hidden neurons in
original ELM classifier, such as sigmoidal, sine, tri-angular
basis and radial basis.

The (1) can be rewritten compactly in a matrix form as
follows:

HW = Q, (2
where H, W, and Q are the hidden layer output matrix, the

output weights matrix, and the coded class label matrix,
respectively. These matrices can be represented as follows:

Hvy, o B o B 20 o )
u(viz; +by) w(vpz; +by)

U(VLZN + bL) NxL

wi a1
W= ST ;0 Q T . (3)
WL Lxm qN Nxm

Thus, for the given linear system as in (2), the output
weights are determined by finding the least-square
solution [15]. The minimum norm least-square solution of
the above linear system can be represented as follows [4]:

W = H'Q, 4)

where H' is the Moore-Penrose (MP) generalized inverse
[16] of matrix H. The solution W is unique, and has the
smallest norm among all the least-square solutions of (2).
This implies that the smallest training error can be reached,
and ELM tends to obtain good generalization performance
by using the MP generalized inverse method [6]. Moreover,
since all the parameters of SLFN need not be tuned, the ELM
algorithm converges much faster than the CGLAs.

3. ACROA METHOD

ACROA is a stochastic and adaptive search method. Its
optimization is based on a chemical reaction process that
leads to the transformation of chemical substances into
another. The principle of ACROA contains five steps (more
details about five steps can be found in [11, 14].

Step 1: Optimization problem and initial parameters.
The optimization problem is defined as

minimize{f(a)}; g€ H, = [0}, @];

p={1,2, .. M (5)

where f(a) is a objective function, a = [a;, &, .., %] IS
a decision variables vector, H, is the feasible range of

values for pt" decision variable, M is the number of decision
variables, and 63 and 9{) are the upper and lower bounds of

the pt™ decision variable, respectively. The different

w(vizy + by)
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encoding type of molecules is used appropriately for each
optimization problem. Also, the parameter ReacNum is
initialized in this step.

Step 2: Initialization and evaluation for reactants. The
reactants are initialized uniformly in the possible solution
region. The association rules are represented, and the value
of objective function is evaluated.

Step 3: Application of elementary reactions. In the
ACROA, there are five elementary reactions, namely
decomposition reaction, redoxl reaction, synthesis
reaction, displacement reaction, and redox2 reaction.

Step 4: Updating reactants. The chemical equilibrium is
tested, and the new reactants are updated by evaluating
objective function value.

Step 5: Checking termination criterion. Step 3 and step
4 will be repeated until the termination criterion is met.

4. OPTIMIZED ELM USING ACROA (AC-ELM)

In this section, ACROA will be used to optimize the
hidden biases and input weights of ELM with the prefixed
number of hidden neurons. The flow chart of AC-ELM is
shown in Fig. 1, and consists of the following detailed steps:

The first, the set of initial molecules (Pop) is randomly
generated, in which each molecular structure represents
one ELM model. Each molecular structure in this solution
set is composed of a vector of hidden biases and input
weights:

0y = [Vllﬂ Y1 v M Y2o ¥20 0 N2s e (6)
Vib Yo s Mo B B oww BT

where w, is the k™ molecular structure of the

molecules set, and k = 1, 2, ..., PopSiz&ll elements in the

molecular structure are randomly initialized within the
range of [—1, 1.

The second, instead of the whole training samples set as
used in the literatures [6, 17], the corresponding fitness
function of each molecular structure is only adopted as
RMSE on the validation samples set to avoid the over-fitting
of the SLFN:

fC)= Ni N _L_ win(vizy +b;) — q 2’ (7)
v . i=1 5

where Ny is the number of the validation samples
(Ny <N), and || ||, is the Euclidean norm. Then, the
fitness function of each molecular structure is evaluated.
For each molecular structure, the corresponding output
weights are determined according to (4) on the training
samples set.

The third, as investigated by Bartlett et al. [18] and Zhu
et al. [6], neural networks tend to get the weights of smaller
norm to reach better generalization performance. In order
to obtain the best molecular structure for the population of
molecules, the RMSE on the validation samples set along
with the norm of output weights are considered. Thus, the
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generalization performance of SLFN is significantly
improved. The corresponding details are described as
follows:

[ (f(wy,) — f(wy) = ef(wp)) or
o, i((w(mb) — flw)l < sf(mb))>

and ( ||Wu,k||2 < ”Wwb ”2)
else

(

|
wn = | ®

|

\ W)

where ¢ is a tolerance rate, and f(w,) and f(w) are the

corresponding fitness functions for the k™ molecular
structure and the best molecular structure of all molecules,
respectively. W, is the matrix of the corresponding output
weights when the hidden biases and input weights are set
as the k™ molecular structure, and W, is the best
molecular structure of all molecules attained by MP
generalized inverse.

ACROA

F@

Input weights and
hidden biases

v

P Training ELM model

!

Evaluating the fitness
> function and the norm
of output weights

S e

Training
samples set

Validation
samples set

Yes
L, Testing Optimal l-LLM parameters
samples set obtained

I

Classification accuracy
and cost time

Fig. 1. The flow chart of AC-ELM

The fourth, in the iteration, the new molecules are
added into the population by occurring uni-molecular
collision or inter-molecular collision. According to the
literatures [3, 4], all elements in the molecular structure
should be bounded within the range of [-1, 1. Therefore,
the normalization of the elements of these new molecules
in the ACROA is needed, and it is performed as follows;

_(2=vg w<-1 . _ Coe—
vsi—{ 2—v, u>1 =12, ., L s=1,2(9., m
_(=2-by h<-1 . _
b={ 3 h sy =2l 0
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Finally, the process of the above optimization is
reiterated until the stopping criterion is met. Therefore, the
optimal ELM with the obtained hidden biases and input
weights is applied to the testing samples set.

5. EXPERIMENT RESULTS

In this section, the experimental results are presented
on four classic classification problems from UCI machine
repository [19] to validate our proposed method. These
benchmark data sets present different degrees of
difficulties and different number of classes. The
specification of these problems is listed in Table 1. For each
trial of simulation, the training, validation and testing data
sets are randomly regenerated from its whole data set for
all the algorithms [6].

In the experiment of this paper, all the input attributes
and output classes have been normalized to the ranges
[0, 1 and [—1, 1, respectively. The input weights and the
biases of ELM have been obtained into the range [—1, 1.
The sigmoidal function p(x) = 1/(1 + e™) is used as the
activation function for ELM [4].

In order to evaluate the performance and effectiveness
of proposed AC-ELM method, the AC-ELM method is
compared with original batch ELM [4], the evolutionary
ELM (E-ELM) [6], and the evolutionary ELM based on PSO
(PSO-ELM) [9]. All the simulated results are carried out in
MATLAB 7.10 environment.

Table 1. Specification of four classification problems

Inertia Factor (w) 0.8t00.3
Maximum Number of Iterations 100
Number of Trials 50
Table 3. DE parameters for all simulations
Parameters Value
Population Size (NP) 50
Constant Factor (F) 0.9
Crossover Constant (CR) 0.7
Tolerance Rate (&) 0.03
Maximum Learning Epochs 100
Number of Trials 50

First of all, the simulation of the original ELM classifier is
represented for four classification problems. The number of
neurons in the hidden-layer is considered in the range
[1, 100. Fig. 2 shows the training and testing accuracies
depend on the number of hidden nodes for all data sets.

) Number of samples

Problems | Attributes | Classes — . :
Training | Validation | Testing | Total
Cancer 30 2 229 170 170 | 569
Credit 14 2 270 210 210 | 690
Diabetes 8 2 252 258 258 | 768
Glass 9 6 114 50 50 214

Four algorithms, the ELM, the PSO-ELM, the E-ELM, and
the AC-ELM, were used to classify four data sets (in Table 1).
For PSO, the parameters were fixed for all data sets as in
Table 2, according to the literatures [10, 20]. Similar to PSO,
the population sizes and maximum learning epochs of DE
were set to 50 and 100, respectively, and some other
parameters were fixed with the values given in Table 3 [6].
To make a fair comparison, the values of the ACROA were
chosen to be the same, e.g., the initial population is set by
ReacNum = 50, and the termination criterion is considered
as 100 iterations. The performance of all methods is
evaluated by using the average and standard deviation
(Dev) of the testing accuracy in 50 trials.

Table 2. PSO parameters for all simulations

Parameters Value
Swarm Size (s) 50
Acceleration Factors (¢,) 19
Acceleration Factors (C,) 19
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Fig. 2. The training and testing accuracies of ELM depend on the number of
hidden nodes

As seen from the results in Fig. 2, the training accuracies
increase when the number of hidden nodes increases.
However, the testing accuracies only obtain maximum
values with the number of hidden nodes in the range
[10, 30, and they obtain lower value with other numbers
of hidden nodes. Specifically, the highest results of the
testing accuracies, together with the corresponding
number of nodes in the hidden layer, are presented in
Table 4. In Table 4, the corresponding performances of
three evolutionary ELMs on all classification problems are
also shown. Note that for all data sets and algorithms, the
best results (according to the empirical analysis) are
emphasized in bold.
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Table 4. Performance of four algorithms on all data sets hidden neurons in the AC-ELM, and improving the testing
A A accuracy. The results in Table 4 also show that the AC-ELM
_ \gfriggt cc(;;ra;y Norm of is able to obtain the smaller norm of the output weights
Problemglgorithms Hidden| ( %— . z:_n | Cost Output than the PSO-ELM, the E-ELM, and the ELM on two data sets
Nodes eviation Time (s) Weights (such as Cancer and Diabetes). For Credit and Glass data
Training | Testing sets, the smallest norm of the output weights is obtained
96,36+ | 9474 + by the PSO-ELM method. Besides, for four compared ELMs
Cancer |ELM 36| 0 4_7 '126 0.0278| 2.3452x10°|  on all data sets, the norm values at each trial are surveyed,
' ' and represented in Fig. 3.
PSO-ELM 16 95'500313' 9525; 16.4638| 2.1947x10* As seen from Fig. 3, the norm values of the output
' ' weights obtained by the PSO-ELM, the E-ELM, and the AC-
9457+|95.15+ ,|  ELM is almost less than those achieved by the ELM on all
EELM 16 089 152 12.2285) 2.3048x10 cases in each trial except on Diabetes classifications. In all
%589+ 9573 cases, the norm values of the AC-ELM are steadier than
AC-ELM 16 '126 +1'35 1.5651|1.7653x10*|  those of the ELM, the PSO-ELM, and the E-ELM. Therefore,
— the proposed algorithm has the best generalization
Credit | ELM op| BOBTE|84BTE1 o enl 47g3ee|  PErformance in all compared algorithms.
084| 225 ~ ' e -
86.85+|85.96 + s S
PSO-ELM 16 18.8695 | 4.8932x10° 35| |
046 177 | | Groem
84.77+|86.15+ . 2
E-ELM 16 138 175 12.0234| 6.5274x10 : 25|
g 2
86.95+| 86.42 . -
AC-ELM 16 60| +148 1.643168| 6.1132x10 gl
Diabetes | ELM 15 77'5162*; 76'1242*; 0.0345| 7.8732010°
78 82. +|76 87. + B Lo e St e e
_ . = i = 1 0 5 10 15 20 2ri€;| 30 35 40 45 50
PSO-ELM 12 06l 162 27.8762| 4.6402x10 (T)
a
7681+| 7691+ | 5
E-ELM 12 107l 171 17.4382| 5.4987x10 5 x10 ——
PSO-ELM|
7792+ 77.25 1 25| Al
AC-ELM 12 162| +138 2.2376(4.1295x10 ) CRO-ELM|
75.21% | 6437+ i H
Glass  |ELM 30 25l 679 0.0201| 4.8732x10 g |
7098+ | 6531+ \ §
PSO-ELM 12 198 508 8.5836| 1.3106x10
0.5
66.53+|65.12+ '
E-ELM 12 3'05 4'92 8.7601 2.4382)(10 00 1’) 1‘0 1‘5 2‘0 2i5 50 1;5 4‘0 4‘5 50
7029+| 65.59 '
AC-ELM 12 54| +447 1.2139| 1.8762x10 3 (b) -
From Table 4, it can be seen that the testing accuracy of 1 : ﬁé“é-w
AC-ELM algorithm is the highest, compared with the other 200 p s T

three algorithms on all the data sets. The training accuracy
of the AC-ELM is highest on Credit data set only, while the
training accuracy of the ELM and PSO-ELM are highest on
two data sets (Cancer, Glass) and one data set (Diabetes),
respectively. The cost time of the AC-ELM is less than the
PSO-ELM and the E-ELM on all the data sets. Specially, the
number of hidden nodes which used to attain these results

150

Norm of output weights

in the AC-ELM is less than that in the ELM, and the same in T ;0 S
both the PSO-ELM and the E-ELM. Clearly, the global and Tral
local research ability of ACROA advantages reducing the ©

38 | Tap chi KHOAHOC VA CONG NGHE @ Tap 56 - S6 5 (10/2020) Website: https://tapchikhcn.haui.edu.vn



P-ISSN 1859-3585 | E-ISSN 2615-9619

SCIENCE - TECHNOLOGY

ELM
+— PSO-ELM
10 - E-ELM
—*+— CRO-ELM|

Norm of output weights
D
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Trial
(d)
Fig. 3. The norm of output weights at each trial on Cancer, Credit, Diabetes,
and Glass

() For Cancer dataset; (b) For Credit data set;
(c) For Diabetes data set; (d) For Glass data set
6. CONCLUSIONS

In this paper, a novel learning algorithm based on
hybridization of ACROA with ELM, namely AC-ELM is
proposed. In the proposed algorithm, the hidden biases and
input weights of the ELM were optimized by the ACROA, and
the output weights of the ELM were analytically determined
by using the smallest norm least-square scheme. Moreover,
in the process of optimizing the hidden biases and input
weights, the ACROA algorithm considered both the norm of
the output weights and the RMSE on validation samples set.
Therefore, the AC-ELM can search the global minimum,
which represents the SLFN providing the best generalization
performance. Finally, the performance of the tested
algorithms was evaluated with well-known benchmark
classification datasets. Experiment results show that the AC-
ELM obtains higher testing accuracy on the various datasets
than the ELM, the PSO-ELM and the E-ELM, while the AC-ELM
obtains lower cost time.
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