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Abstract 

Coronary artery disease (CAD) is one of the leading causes of death in the world, especially in the middle-
aged and old populations. CAD treatment costs are very high when patients are at a late stage, complicated 
pathologies. This study investigated the efficiency of the diagnoses of CAD by a deep-learning model using 
polar maps and slice images derived from myocardial perfusion imaging (MPI) by single photon emission 
computed tomography (SPECT) cameras. Data for evaluation were collected at the Department of Nuclear 
Medicine, 108 Military Central Hospital. The experimental results showed that learning from MPI slice images 
provided a higher diagnosis accuracy than from polar map images. 
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1. Introduction* 

Coronary artery disease (CAD) is a modern-

world medical issue of interest because of its rising 

incidence and the leading cause of death and 

disablement. The medical fee for the treatment of CAD 

is high, especially when the patient is in the late stage 

or has complications [1]. The detection of CAD is 

based on myocardial perfusion imaging (MPI) by 

using SPECT camera. In the United States, there are 

about 7 million SPECT scanning sessions every year 

[2]. If the CAD is detected in the early stage, the 

patient can be effectively cured and has a high chance 

of survival. However, the accuracy of the doctor’s 

decision depends on many factors, including image 

quality and the doctor’s expertise. Applying machine 

learning for CAD diagnosis is one of the solutions that 

help to improve the accuracy of the detection. 

Machine learning for medical diagnosis has been 

approached for a long time [3]. Currently, deep 

learning (DL) which is a broader family of machine 

learning provides many impressive results for the 

medical diagnosis problem [4-6]. CAD diagnosis 

using DL based polar map on stress MPI with total 

perfusion deficit was introduced in [7]. In the existing 

work, the DL model is constructed of convolutional 

neural networks (CNN) layers and three fully 

connected (FC) layers. The output of the DL model is 

the weight (ranging 0-1), in which a patient is decided 

to have CAD if the output weight is greater than 0.7 
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and not have CAD if the weight is 0.7 or smaller.  The 

DL model was trained on a dataset of 1,638 polar 

images (1,018 images of CAD and 620 images of non-

CAD). The precision of the DL model is 82.3%. 

Polar images are synthesized from slice images 

by an algorithm which is based on the standardized 

myocardial segmentation and nomenclature for 

tomographic imaging of the heart [8,9]. This is 

suggested by the American Society of Nuclear 

Cardiology (ASNC). There may have some disease 

features that are missed in the synthetic procedure. In 

this study, we consider using the SPECT images for 

dignosing CAD because the polar map is derived from 

these images and may not maintain as many features 

as the original images. We also introduce a deep 

learning model to diagnose the CAD from SPECT 

images. 

2. Dataset and diagnosis model 

2.1 Dataset 

Zeiler and Fergus demonstrate that a CNN layer 

can learn the features, such as color and edge, which 

form the object in the input image [10]. Therefore, we 

used CNN layers to learn the characteristic medical 

signs of disease in SPECT images. However, to obtain 

the best benefit of the CNN layer, a large dataset is 

necessary.  

SPECT DATASET. The dataset was collected at 

the Department of Nuclear Medicine, 108 Military 
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Central Hospital. It includes 1413 heart SPECT images 

which were scanned from 2015 to 2018. SPECT 

images were labeled as CAD and non-CAD by many 

experts. The detail of the dataset is shown in Table 1. 

The dataset was approved by the ethics committee of 

the Department of Nuclear Medicine, 108 Military 

Central Hospital, and it has been used as a reference 

dataset for the CAD diagnosis. 

Table 1: SPECT dataset. 

 CAD Non-CAD 

Male 638 477 

Female 134 164 

Total 772 641 

In this study, we used polar map on stress MPI 

and slice MPI to detect the CAD. The other patient’s 

information, such as age, the number of injured 

coronary artery branches, the test result before MPI 

scanning, is not of our interest. 

DATA ACQUISITION. Data were collected 

from rest and stress MPI sessions which are based on 

the Bruce protocol about imaging guidelines for 

nuclear cardiology of the ASNC. Before scanning 60 

minutes, the patient was injected with 0,31mCi/kg of 

radioactive tracer Tc99m_MIBI for each rest and stress 

phases. For patients who cannot exercise, Diyridamole 

was used with 0,56mg/kg/ 4 minutes after heart 

frequency getting 85% of theory [11,12]. Fig. 1 shows 

the procedure of the two-phase MPI. 

The SPECT cameras are Optima 640, Infinia and 

Ventri, from GE Healthcare. The imaging procedure 

and parameters are set as default as GE’s guidelines. 

The image quality is verified by doctors with using of 

specified softwares, such as QGS/QPS, in the Xeleris 

servers. 

Slice images were reconstructed by the iterative 

optimization algorithm from SPECT cameras. Noise 

can be removed by imaging when the patient was 

prone or by the attenuation correction. 

 

 

Fig. 1. Procedure of the two-phase myocardial perfusion imaging. 

       

Fig. 2. An example of slice images (left) and polar images (right). The left picture contains 8 rows of images, 

grouped as 4 pairs of stress (above) and rest (below) phases. From top-to-bottom, pairs are images of two short 

axes, a vertical long axis, and a horizontal long axis. The right images are polar images which are derived from 

slice images.  

Rest phase 

Stress phase 
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IMAGE PREPROCESSING. The image 

processing scheme is shown in Fig. 3. First, the 

boundaries around the left ventricular myocardium are 

provided by the Myovation Evolution tool in Xeleris 

software, supported by GE Healthcare [13]. The 

boundaries are adjusted and verified by technicans 

with more than 15 years of experiences. Doctors 

double-check the region of interest, i.e. left ventricle 

and valve plane position if necessary. After that, we 

obtain the slice and polar images. 

In a heart SPECT session, we obtain slice images 

and polar images (see Fig. 2). The polar images are 

derived from slice images by using the standardized 

myocardial segmentation and nomenclature for 

tomographic imaging [8,9]. Images were acquired both 

in rest and stress phases. These images, which 

represent the anatomical information of the patient’s 

heart, are then used to diagnose the CAD. 

IMAGE NORMALIZATION. The original 

size of polar and slice images is 1920 × 1080 × 3 (3 

indicates three color channels). Images were cropped 

by a fixed margin to remove unnecessary information 

and to reduce the computation. Cropped size is 1080 × 

1640 × 3 for slice images and 314 × 314 × 3 for polar 

map image (see Fig. 4).  

DATA LABELING. SPECT images of each 

patient were labled as CAD or non-CAD. This was 

done by experts and verified by many-year experient 

doctors. In case of CAD, doctors specify the injured 

location in the myocardial area that corresponds to the 

control area of arteries, such as right coronary artery 

(RCA), left circumflex (LCX), left anterior descending 

(LAD). Each control area of arteries is divided into 

territories (see Fig. 5). 

The doctor specifies the injured coronary artery 

territories and its control area (as shown in Table 2). 

This is the key point for CAD labeling. For example, 

if the result is “There is a small defect in the 

lateroanterial wall due to ischemia in the perfusion 

area of LCx”, the patient is labeled CAD. If the result 

is “The result is properly normal”, the patient is labeled 

non-CAD. We developed a software for labeling the 

CAD (see Fig. 6). 

 

 

 

Fig. 3. The image processing scheme of SPECT 

images. 

 
Fig. 4. Cropped slice (A) and polar (B) images of             

Fig. 2. 

 

 

Fig. 5. A slice view of coronary atery territories as 

suggested by the American Heart Association. 

  

Fig. 6. The software used for labeling CAD/non-CAD 

patients. 
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Table 2. 17 coronary artery territories used in CAD diagnosis results. 

LAD RCA LCX 

1. Basal anterior 3. Basal inferoseptal 5. Basal inferolateral 

2. Basal anteroseptal 4. Basal inferior 6.Basal anterolateral 

7. Mid anterior 9. Mid inferoseptal 11.Mid inferolateral 

8. Mid anteroseptal 10. Mid inferior 12. Mid anterolateral 

13. Apical anterior 15. Apical inferior 16. Apical lateral 

14. Apical septal   

17. Apex   

2.2. Diagnosis model  

We develop our deep learning network based on 

the VGG network, which is consists of 16 

convolutional (CNN) layers and is very appealing 

because of its very uniform architecture [14]. Our 

network includes 8 CNN layers, filter size of 3×3. 

Each CNN layer is followed by a BatchNormalization 

layer for normalizing data, then a Rectified Linear Unit 

(ReLU) activation function and a MaxPooling layer 

with stride 2. These CNN layers are used for extracting 

main features of input images. The output of CNN 

layers is passed through a GlobalAverage Pool to 

generate the feature vector. The fully connected (FC) 

layer with the softmax function is added to the end of 

the network. The last FC layer consist of 2 units 

(representing the CAD and non-CAD classes). 

Overview of our network is shown in Fig. 7. 

 The output of our proposed network is a 2-

element vector y = [pCAD, pnon-CAD], in which each 

element represents the probability of classes: pCAD 

indicates the probability of CAD, pnon-CAD indicates the 

probability of non-CAD, where pCAD + pnon-CAD = 1. 

The output label of the network is assigned to the class 

with higher probability.  

In our method, the slice MPI image is fed into the 

network for diagnosing the CAD. We also prove the 

efficiency of using the MPI image in CAD diagnosic 

compared to the polar map images. This is done by 

feeding the polar map image into the same network 

architecture. We access the precision of our model by 

using k-fold cross validation, with k = 5. More precise, 

our dataset is separated randomly into 5 equal subsets. 

Each subset consists of 282 (the last one has 285) 

images with average 154 (±7) CAD and 128 (±8) non-

CAD. Four subsets were used for training and the other 

subset was used for testing. We repeated the training 

and testing procedure, each with different testing 

subset (see Fig. 8). The precision of the tested subset 

in each procedure was computed and recorded. The 

precision is the mean of the 5 recorded values. 

  

 

Fig. 7. Our deep learning network architecture used for diagnosing CAD. 
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Fig. 8. An illustration of 5-fold cross validation. Fig. 10. Mean precision of two models using slice MPI 

images and polar map images. 

 

 
Fig. 9. Precision of two models using slice MPI 

images and polar map images on each subset 

Fig. 11. ROC of the trained model using slice MPI and 

polar map images. 

 

Our network model was built in python with 

Keras API.  The network was trained on a computer 

with configuration CPU IntelI CoreI i3-6100 @ 

3.70GHz; RAM: 8Gb; GPU: Nvidia GeForce GTX 

1060 3GB. 

The training time of the network with four 

subsets is about 1 hour and 13 minutes. The time for 

recoginizing an image is about 50 milli seconds. 

3.  Experimental results and discussion 

Experimental results indicate that deep learning 

model trainning with slice MPI produces higher 

diagnosis accuracy on all subset than using polar map 

(Figure 9). Figure 10 shows the mean precision of our 

proposed deep learning network using slice MPI 

images (86.14% ± 2.14%) and polar map images 

(82.57% ± 2.33%). 

In additions, we also analyze the receiver 

operating characteristic (ROC) that illustrates the 

diagnostic ability. Fig. 11 show the ROC of the trained 

model using slice MPI and polar map images. The 

ROC curve of the model using slice MPI images is 

higher than that of model using polar map images. This 

indicate that model using slice MPI images has a 

higher diagnostic ability than model using polar map 

images. 

4. Conclusion 

This paper introduced a deep learning method for 

diagnosing the CAD using the slice images acquired 

from the SPECT camera. The performance of our 

method is better than the existing method. 

With the same deep network, learning from slice 

images provides a higher accuracy of detecting CAD 

than from polar images. This is reasonable since polar 

images are synthesized from slices images and the 

synthesization probably does not maintain all the 

features of slice images. The experimental results 

suggest that slice images is helpful and should be used 

in diagnosing the CAD. 
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This study shows the potentiality of using SPECT 

slice images in diagnosing CAD by deep learning 

methods. However, there still have space for 

improving the accuracy of detecting CAD. Our future 

work is to improve the performance of the CAD 

detection, such as polishing the image processing 

procedure since the input of the network in our 

experiment is not refined; and adding more 

information of patient, e.g. TPD parameters, age, 

gender, and past medical history. 
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